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Abstract

Recently, caption generation with an encoder-decoder
framework has been extensively studied and applied in dif-
ferent domains, such as image captioning, code captioning,
and so on. In this paper, we propose a novel architecture,
namely Auto-Reconstructor Network (ARNet), which, cou-
pling with the conventional encoder-decoder framework,
works in an end-to-end fashion to generate captions. AR-
Net aims at reconstructing the previous hidden state with
the present one, besides behaving as the input-dependent
transition operator. Therefore, ARNet encourages the cur-
rent hidden state to embed more information from the previ-
ous one, which can help regularize the transition dynamics
of recurrent neural networks (RNNs). Extensive experimen-
tal results show that our proposed ARNet boosts the perfor-
mance over the existing encoder-decoder models on both
image captioning and source code captioning tasks. Ad-
ditionally, ARNet remarkably reduces the discrepancy be-
tween training and inference processes for caption genera-
tion. Furthermore, the performance on permuted sequen-
tial MNIST demonstrates that ARNet can effectively regu-
larize RNN, especially on modeling long-term dependen-
cies. Our code is available at: https://github.com/
chenxinpeng/ARNet.

1. Introduction

Caption generation [35, 5] is a fundamental research
problem, which has received increasing attention in both
computer vision and natural language processing commu-
nities. The task is to predict a syntactically and seman-
tically correct target sequence consisting of consecutive
words based on the provided source information. For ex-
ample, an image captioning task aims to generate an ap-
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Figure 1. An overview of our proposed ARNet coupling with the
conventional encoder-decoder framework. The encoder takes an
image or a source code file as input and generates its semantic
embedding, based on which the decoder, usually one RNN, can
thus generate the semantically-correlated captions. Other than an
input-dependent transition operator used in the decoder, the pro-
posed ARNet connects the neighboring hidden states together by
reconstructing the past hidden state with the present one. The blue
arrows indicate the state transitions in RNN.

propriate sentence to describe the image content [32, 15],
while a code captioning task targets at providing a sentence
to summarize the conceptual idea behind the given source
code file [13, 35]. Caption generation is a very challeng-
ing task. First, the semantic meaning of the given source
needs to be well learned and captured, especially for differ-
ent modalities, such as image and source code. Second, the
target sentence generating process needs to not only main-
tain the syntactical correctness but also ensure the seman-
tic correlations with the source information, which thus re-
quires complicated interactions between them.

Recent work on caption generation, such as image cap-
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tioning [32], counts on an encoder-decoder framework to
generate the corresponding sentence for one given image.
As illustrated in Fig. 1, the encoder takes one image or
source code file as input and generates its corresponding
semantic embedding. Due to the different behaviors and
characteristics of the source, different neural network archi-
tectures are used as the encoder, e.g., convolutional neural
networks (CNNs) for images and recurrent neural networks
(RNNs) for sequential data such as source code and natural
language. With the semantic embedding, the decoder em-
ploys another RNN to generate the target sentence to reflect
the content of the image or summarize the conceptual idea
of the source code. Moreover, in order to encourage the de-
coder to focus on the crucial information for generating cap-
tions, attention mechanisms were proposed for image cap-
tioning [34] and text abstractive summarization [13, 7]. At
each time step, the attention strategy measures the relevance
of the encoder’s hidden states given all the previously gen-
erated words in the target sentence. However, the attention
mechanism proceeds in a sequential manner, which lacks
global modeling capacities. In order to address this draw-
back, a review network [35] was proposed with review steps
lying between the encoder and the decoder. As such, a more
compact, abstractive, and global annotation vectors are gen-
erated, which have been demonstrated to further benefit the
sentence generation process.

Even though the encoder-decoder architecture and its
variants have achieved remarkable performance improve-
ments on caption generation tasks, two problems still re-
main. First, the decoder relies on an input-dependent tran-
sition operator to generate captions. Specifically, the word
y′t+1 is conditioned on the hidden state ht at time step t
independently, which has not fully exploited the latent re-
lationship with its previous one ht−1. Second, the discrep-
ancy, also named as exposure bias, in RNN between training
and inference still exists [18, 4]. During the training phase,
we take the ground-truth word yt as input of the RNN unit to
predict the next word y′t+1 and force it to stay close to yt+1.
However, the ground-truth word yt is unavailable during the
inference phase. The RNN unit depends on the generated
word y′t by the model from the previous time step for y′t+1

prediction.
In order to handle the aforementioned problems, in

this paper, we introduce an Auto-Reconstructor Network
(ARNet) coupling with the conventional encoder-decoder
framework for caption generation, as illustrated in Fig. 1.
Our proposed ARNet connects two neighbouring hidden
states by reconstructing the past hidden state with present
one. As such, ARNet encourages the current hidden state to
embed more information from the previous one. The tran-
sition dynamics of the RNN in the decoder are thus regular-
ized. Our main contributions lie in three-fold:

• We propose a novel architecture that introduces an

ARNet coupling with the encoder-decoder framework,
which strengthens the connection between neighbor-
ing hidden states by reconstructing the past with the
present.

• ARNet can help regularize the transition dynamics of
the RNN, therefore mitigating its discrepancy for se-
quence prediction.

• ARNet coupling with the encoder-decoder framework
and its variants achieve performance improvements
on both image captioning and source code captioning
tasks. Moreover, ARNet, conducting regularization on
RNN, can effectively model long term dependencies.

2. Related Work
2.1. Encoder-Decoder Framework

The encoder-decoder framework for caption generation
is inspired by its successful application to machine trans-
lation [6], where RNNs were used for both encoding and
decoding. Generally, in an encoder-decoder framework, the
encoder encodes the input into an informative vector and the
decoder translates the vector into a corresponding sequence.
Either image captioning or code captioning can be seen as a
task of translation. And the encoder-decoder framework has
achieved a great success on these tasks [32, 35, 14]. To al-
low the RNN unit to determine which sub-part of input data
is more important for each time step, the attention mech-
anism was introduced in the encoder-decoder framework
and remarkably improved the performance [34]. There-
after, many extensions of attention mechanism have been
proposed [37, 25] to push the limits of this framework for
caption generation tasks.

2.2. Exposure Bias and Regularization for RNN

An inevitable problem for sequence generation tasks is
exposure bias when the network is trained with the teacher
forcing technique [33]. Scheduled sampling [4] introduces
a sampling mechanism to imitate the sequence prediction
process during the training phase. While scheduled sam-
pling has achieved good performance on the image caption-
ing task, Huszar [11] demonstrated that this training tech-
nique is not a consistent estimation strategy. Furthermore,
the professor forcing [18] used generative adversarial net-
works [8] to encourage the distributions of recurrent hidden
states of training and inference phase to match with each
other. Recently, Krueger et al. proposed zoneout [17] to
regularize RNN. The values of the hidden states and mem-
ory cells of the RNN either maintain their previous values
or are updated as usual. Therefore, stochastic identity con-
nections between subsequent time steps were introduced in
zoneout. Note that the information of the previous hidden
state randomly enters the current time step in zoneout. In



contrast, our model encourages the current hidden state to
absorb information from a previous time step by forcing the
current hidden state to reconstruct the previous one.

3. Background

ARNet is proposed to couple with the encoder-decoder
framework to improve the performance of caption genera-
tion tasks. In this section, we briefly review the encoder-
decoder framework.

3.1. Encoder

In the encoder-decoder framework, the encoder is used
to generate the semantic representation of input data. In
order to make a full understanding of the input data, the en-
coder generates not only the global information in the form
of one distributed vector g but also the local information
represented by a set of vectors s = {s1, s2, . . . , sn}, which
will be further used as the input of the decoder.

Due to different behaviors and characteristics of the
source input, different types of encoders have been used for
different caption generation tasks. For image captioning,
recently developed CNNs, such as Inception-X [29, 12, 30,
28] and ResNet [9], are usually utilized to generate global
and local representations of images. In this paper, we em-
ploy Inception-V4 to encode one given image I, with the
last fully-connected layer being the global representation g
and the outputs of the last convolutional layer composing
the local information vectors s, respectively.

For the task of source code captioning [35], RNNs are
more naturally suited for modeling the source code se-
quence. Given one input source code token sequence I =
{i1, ..., iT }, at time step j we feed ij into the RNN unit
and obtain the hidden state hj . The hidden state of the
last time step hT encodes the information of the whole se-
quence, which is regarded as containing the sequence global
information. And the hidden states generated during the en-
coding process contain the subsequence information, which
are composed as local information vectors. In order to
well capture long term dependencies, long short-term mem-
ory (LSTM) [10] and gated recurrent unit (GRU) [6] with
specifically designed gating mechanisms were proposed. In
this paper, LSTM is employed as the encoder for handling
input sequence data.

LSTM unit acts as a transition operator transferring the
previous hidden state ht−1 to the current hidden state ht
with the input xt at time t:

ht = LSTM(xt, ht−1). (1)

In this paper, we use the same definitions as [38]. Then the

LSTM transition process can be formulated as follows:
it
ft
ot
gt

 =


σ
σ
σ

tanh

T

(
xt
ht−1

)
,

ct = ft � ct−1 + it � gt,
ht = ot � tanh(ct),

(2)

where it, ft, ot, ct, ht, and σ are input gate, forget gate,
output gate, memory cell, hidden state, and sigmoid func-
tion, respectively. T is a linear transformation matrix. �
represents an element-wise product operator.

3.2. Decoder

Based on the global information vector g and local in-
formation vectors s generated by the encoder, the aim of
the decoder is to generate a natural sentence C consisting of
N words (y1, y2, · · · , yN ), which not only expresses con-
tent information of the input source, e.g., image or source
code, but also should be naturally coherent. To further ex-
ploit the contributions of the local information vectors and
improve the performance, the attention mechanism [2, 34]
was proposed. Therefore, the attentive LSTM can be further
reformulated as:

it
ft
ot
gt

 =


σ
σ
σ

tanh

T

 xt
ht−1
zt

 , (3)

where zt denotes the context vector, yielded by the attention
mechanism. Given the local information vectors s gener-
ated from the encoder, zt is computed by:

zt = fatt(s, ht−1) =

|s|∑
i=1

exp (α(si, ht−1))∑|s|
j=1 exp (α(sj , ht−1))

si. (4)

α(si, ht−1) measures the similarity between si and ht−1,
which is usually realized by a multilayer perceptron.
LSTMs with or without the attention mechanism can both
be used as the decoder. In this paper, in order to demonstrate
the effectiveness of our proposed ARNet, we experiment on
two LSTMs, attentive LSTM and LSTM without attention.

4. The Proposed ARNet
4.1. Architecture

As shown in Fig. 1, the proposed ARNet couples with the
encoder-decoder framework for caption generation. Con-
cretely, our proposed ARNet is realized by another LSTM,
taking the hidden states sequence yielded in the decoder as
inputs. The architecture of ARNet is illustrated in Fig. 2,
from which we can see that ARNet aims at exploiting the
relationships between neighboring hidden states.



LSTM LSTM

ℎ2′

ℒAR𝑁−1

ℎ𝑁−1′

LSTM

ℎ3′

FC FC FC

⋯

⋯ℎ2ℎ1 ℎ𝑁−1ℎ3

ℎ,1

LSTM

ℎ,2 ℎ,𝑁−2

ℒAR3ℒAR2

Figure 2. The framework of our proposed ARNet. At each time
step of the decoder, ARNet takes the present hidden state ht as the
input to reconstruct its previous hidden state ht−1. Lt

AR is defined
to match the reconstructed output ĥt−1 and the previous hidden
state ht−1.

LSTM unit is leveraged to reconstruct the past hidden
state ht−1 with the present one ht, which can be formulated
as:


i′t
f ′t
o′t
g′t

 =


σ
σ
σ

tanh

T

(
ht
h′t−1

)
,

c′t = f ′t � c′t−1 + i′t � g′t,
h′t = o′t � tanh(c′t),

(5)

where i′t, f
′
t , o
′
t, c
′
t and h′t are the input gate, forget gate,

output gate, memory cell and hidden state of the LSTM unit,
respectively. In order to further match the previous hidden
state ht−1, one fully-connected layer is employed to map
the generated h′t into the common space with ht−1:

ĥt−1 = wfch
′
t + bfc, (6)

where wfc and bfc are the weight matrix and bias vector, re-
spectively. ĥt−1 is the reconstructed previous hidden state.
Afterwards, we define a reconstruction error in terms of Eu-
clidean distance between ht−1 and ĥt−1:

Lt
AR =‖ ht−1 − ĥt−1 ‖22, (7)

where Lt
AR measures the reconstruction error of the ARNet

at time step t. Through minimizing the defined reconstruc-
tion error, we encourage the current hidden state ht to em-
bed more information from the previous one ht−1.

Such a reconstruction strategy in our proposed ARNet,
behaving similarly to the zoneout regularizer [17], regular-
izes the LSTM during the caption generation process. Zo-
neout regularizes RNNs by randomly preserving hidden ac-
tivations, which stochastically forces some parts of hidden

unit and memory cell to maintain their previous values at
each time step. With such a process, gradient and state in-
formation are more steadily propagated through time [17].
However, zoneout can be regarded as one “hard” strategy,
which stochastically makes a binary choice between previ-
ous and current hidden states. On the contrary, the recon-
struction strategy of our ARNet presents to be one “soft”
scheme, which learns to adaptively embed the information
of the previous hidden state into the current one. There-
fore, the ARNet relies on LSTM to adaptively fuses both
the previous and current hidden states together, rather than
randomly chooses the previous or current one.

Moreover, with the ARNet reconstructing ht−1 from ht,
we encourage the backward information to flow through
the network, as shown in Fig. 1. The correlations between
ht and ht−1 are further exploited and enhanced. In doing
so, the transition dynamics through time on the LSTM is
regularized. Furthermore, since the ARNet couples with
the encoder-decoder framework, the exposure bias prob-
lem in sequence generation can be alleviated, which will be
demonstrated and discussed in the following experimental
section.

4.2. Training Procedure

The training procedure of our model consists of two
stages. First, we freeze the parameters of the ARNet and
pre-train the encoder-decoder architecture, which is usually
trained by the negative log-likelihood:

LNLL = − log p(C|I) = −
N∑
t=2

log p(yt|yt−1), (8)

where I is the input source, particularly the image or
source code, C denotes the generated caption given I,
p(yt|yt−1) = Softmax(wht), with w being the linear trans-
formation matrix, and ht = LSTM(Eyt, ht−1). y1 is the
sign for the start of a sentence. And Eyt denotes the dis-
tributed representation of the word yt, where yt is the one-
hot representation for the word yt and E is the word embed-
ding matrix. After the encoder-decoder architecture con-
verges, the whole network is fine-tuned using the following
objective function:

L = LNLL + λ
∑
Lt

AR. (9)

Here, λ is a trade-off parameter to balance the contributions
from the ARNet and the encoder-decoder architecture.

5. Experimental Results
5.1. Image Captioning

Image captioning is a task to generate a natural sentence
to describe the visual content of one given image. In this
paper, we use the most popular MSCOCO dataset [21] to
demonstrate the effectiveness of our proposed ARNet.



Table 1. Single model performance of a variety of models on Karpathy’s splits of the MSCOCO dataset. The highest entry for each
evaluation metric is highlighted in boldface.

Model Name BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

NIC [32] 0.666 0.451 0.304 0.203 - - - -
m-RNN [23] 0.670 0.490 0.350 0.250 - - - -
Soft-Attention [34] 0.707 0.492 0.344 0.243 0.239 - - -
Hard-Attention [34] 0.718 0.504 0.357 0.250 0.230 - - -
Semantic Attention [37] 0.709 0.537 0.402 0.304 0.243 - - -
Review Net [35] - - - 0.290 0.237 - 0.886 -
LSTM-A5 [36] 0.730 0.565 0.429 0.325 0.251 0.538 0.986 -

Encoder-Decoder 0.718 0.547 0.412 0.311 0.251 0.530 0.961 0.179
Encoder-Decoder + Zoneout 0.708 0.537 0.403 0.304 0.249 0.525 0.941 0.176
Encoder-Decoder + Scheduled Sampling 0.718 0.548 0.414 0.315 0.252 0.531 0.975 0.180
Encoder-Decoder + ARNet 0.730 0.562 0.425 0.321 0.252 0.535 0.988 0.182

Attentive Encoder-Decoder 0.727 0.557 0.421 0.318 0.259 0.537 0.996 0.185
Attentive Encoder-Decoder + Zoneout 0.720 0.549 0.415 0.314 0.251 0.532 0.975 0.181
Attentive Encoder-Decoder + Scheduled Sampling 0.731 0.563 0.426 0.322 0.256 0.538 1.006 0.187
Attentive Encoder-Decoder + ARNet 0.740 0.576 0.440 0.335 0.261 0.546 1.034 0.190

5.1.1 Dataset

The MSCOCO dataset contains 123,000 images with at
least 5 captions for each image. We use the same data split
as in [15] for performance comparisons, which reserves
5000 images for both validation and testing. We convert all
captions into lowercase, remove non-alphanumeric charac-
ters, and tokenize the captions using white space. We keep
the words that occur at least 5 times, resulting in a vocabu-
lary size of 10,516. We truncate all the captions longer than
30 words. The beginning of each sentence is marked with a
special BOS token, and the end with an EOS token.

5.1.2 Implementation Details

We take Inception-V4 model pre-trained on ImageNet as
encoder. More specifically, we define the output of Average
Pooling layer in Inception-V4 network as the global infor-
mation vector g, the output of the last Inception-C blocks as
local information vectors s. In this case, g is a vector with
dimension 1536, and s = {s1, ..., s64} is a set containing
64 vectors with dimension 1536. During the whole training
stage, we do not finetune encoder. For decoder, LSTM unit
with single layer is used. The dimensions of the hidden state
and word embedding are set as 512. For training, the con-
ventional encoder-decoder model is first trained until con-
vergence by only considering the negative likelihood as de-
fined in Eq. (8). Afterwards, the objective function defined
in Eq. (9) is used to train the proposed ARNet and finetune
the encoder-decoder. During the first training stage, we use
Adam [16] with an initial learning rate 5 × 10−4. Then,
we set the learning rate as 1× 10−4 to continue to train the
model with ARNet. Early stopping is used to prevent over-
fitting. Beam search with size as 3 is utilized to generate the
final caption for one given image.

5.1.3 Evaluation and Comparison

We use the MSCOCO evaluation toolkit∗ to compute
BLEU [26], METEOR [3], ROUGE-L [20], and CIDEr [31]
scores to measure the quality of captions. Since SPICE [1]
captures human judgments better than other automatic met-
rics, the resulting SPICE scores are also presented. Neural
Image Caption (NIC) [32] and Soft Attention model [34] are
used as the encoder-decoder and attentive encoder-decoder
for our proposed ARNet. We also report the metric scores
of models with scheduled sampling. Additionally, we also
compare with m-RNN [23], Semantic Attention [37], Re-
view Net [35], and LSTM-A5 [36]. Table 1 shows the per-
formance comparisons of different models. It can be ob-
served that ARNet can help improve the performance of
both encoder-decoder and attentive encoder-decoder. Our
proposed ARNet also outperforms scheduled sampling and
zoneout, which can be also viewed as RNN regulariz-
ers. Moreover the attentive encoder-decoder with ARNet
achieves the best performance. Therefore, the strategy forc-
ing the current hidden state embedding more useful infor-
mation from the past can more effectively regularize LSTM
and thus improve the generated caption quality.

Some qualitative results are shown in Fig. 3. It
can be observed that the attentive encoder-decoder model
with our proposed ARNet can generate more detailed and
vivid descriptions for given images, such as the words
“keyboard”, “flowers”, and so on.

5.1.4 Discrepancy Analysis between Training and In-
ference

Discrepancy between training and inference is a well known
problem for RNN [4, 18]. In the training stage, RNN is usu-
ally trained to maximize the likelihood of each token in the

∗https://github.com/tylin/coco-caption



Images Generated Captions Ground Truth Captions
Attentive Encode-Decoder:
a close up of a cat on a desk.

Attentive Encode-Decoder-ARNet:
a cat sitting on a desk next to a keyboard.

1. a grey cat peers at a computer keyboard.
2. a cat laying down by a keyboard.
3. a kitty playing with the keyboard on a laptop.
4. a large cat laying atop a computer keyboard.
5. a cat that is laying on a computer keyboard.

Attentive Encode-Decoder:
a display of many different types of cake.

Attentive Encode-Decoder-ARNet:
a cake decorated with many different types of flowers.

1. a layered cake with many decorations on a table.
2. a large multi layered cake with candles sticking out of it.
3. a party decoration containing flowers, flags, and candles.
4. a cake decorated with flowers and flags on it.
5. a cake is decorated with flowers and flags.

Attentive Encode-Decoder:
a brown dog holding a blue frisbee in it’s mouth.

Attentive Encode-Decoder-ARNet:
a dog running in the grass with a frisbee in its mouth.

1. a very cute brown dog with a disc in its mouth.
2. a dog running in the grass with a frisbee in his mouth.
3. a dog in a grassy field carrying a frisbee.
4. a brown dog walking across a green field with a frisbee in it’s mouth.
5. a dog carrying a frisbee in its mouth running on a grass lawn.

Attentive Encode-Decoder:
a truck driving down a road next to a forest.

Attentive Encode-Decoder-ARNet:
a car driving down a road next to a lush green hillside.

1. a street scene of a road going through the mountains.
2. a road curving around hills has one car on it.
3. a yellow car driving away on the road.
4. a small yellow and black car driving around the bend of a road between.
5. a small yellow car going around a turn and a sign.

Figure 3. Example captions from the conventional model and our attentive encoder-decoder-ARNet model, along with their corresponding
ground truth captions. It can be observed that ours can yield more detailed descriptions with meaningful words highlighted in boldface,
such as “keyboard”, “flowers”, “grass”, and so on.

(a) (b)

Figure 4. Hidden states visualization of the attentive encoder-
decoder model (a) and the attentive encoder-decoder-ARNet
model (b). The filled circles in blue represent the hidden states
generated in the training mode, while the open circles in red are
obtained in the inference mode.

sequence given the current state and previous correct token
from ground truth. At inference stage, the previous token is
unknown and replaced by a token generated by the model
itself. Hence, errors can be accumulated quickly along the
generated sequence. To mitigate this problem, the distribu-
tion of sequences of training and inference state should be
non-distinguishable. Here, to study this problem, we con-
sider the distributions of last hidden states of sequences as
in [18], since they encode the necessary information about
the whole sequence.

We extract the hidden state of the LSTM unit which
emits the EOS token or reaches the maximum time step.
We visualize one batch with T-SNEs [22] both for train-
ing and inference, where the batch size is 80. Fig. 4
shows the T-SNE visualization of hidden states for atten-
tive encoder-decoder model and attentive encoder-decoder-
ARNet model. We can see that our ARNet can significantly

Table 2. Discrepancy between training and inference modes on
image captioning task measured by the mean centroid and point-
wise distances defined in Eqs. (11) and (12). Smaller distance
values indicate better performances.

Model Name dmc dpw

Encoder-Decoder 0.747 0.719
Encoder-Decoder + ARNet 0.514 0.561

Attentive Encoder-Decoder 0.773 0.760
Attentive Encoder-Decoder + ARNet 0.491 0.595

reduce the discrepancy between training and inference. We
believe that it is one of the reasons why models with ARNet
perform better than the counterparts.

For further evaluating the discrepancy quantitatively, a
appropriate metric is needed. Since the hidden states are
from different models lying in different spaces, comput-
ing the Euclidean distance between them is not reasonable.
In this paper, we thereby consider cosine distance between
hidden states, which is defined as follows:

d(h1, h2) =
hT1 h2
‖h1‖‖h2‖

. (10)

The cosine distance considers the angle between h1 and h2,
which will not be affected by the norm of h1 and h2.

Based on cosine distance, we define two different dis-
tance metrics to measure these different models. More
specifically, let U = {uI1 , ..., uIB}, V = {vI1 , ..., vIB} be
the last hidden states of decoder that we get from training
and inference modes given input images I1, I2, · · · , IB , re-
spectively. The first distance metric is the mean centroid



Table 3. Performance comparison on the testing split of the HabeasCorpus dataset. The best results among all models are marked with
boldface.

Model Name BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Review Net [35] 0.192 0.105 0.074 0.057 0.085 0.200

Encoder-Decoder 0.183 0.093 0.063 0.047 0.080 0.188
Encoder-Decoder + Zoneout 0.182 0.080 0.063 0.047 0.080 0.181
Encoder-Decoder + Scheduled Sampling 0.186 0.098 0.067 0.051 0.082 0.194
Encoder-Decoder + ARNet 0.196 0.107 0.075 0.058 0.089 0.213

Attentive Encoder-Decoder 0.228 0.140 0.106 0.088 0.105 0.256
Attentive Encoder-Decoder + Zoneout 0.227 0.140 0.105 0.086 0.090 0.220
Attentive Encoder-Decoder + Scheduled Sampling 0.229 0.142 0.108 0.089 0.107 0.270
Attentive Encoder-Decoder + ARNet 0.255 0.173 0.139 0.120 0.123 0.289

distance dmc:

dmc (U,V) = d

 1

B

B∑
i

uIi ,
1

B

B∑
j

vIi

 . (11)

The second distance metric dpw is the point-wise distance
between the hidden states of the same input but from train-
ing and inference respectively. And dpw can be computed
according to:

dpw (U,V) =
1

B

B∑
i=1

d (uIi , vIi). (12)

dpw only measures the difference between the ground-truth
and sequence generated from the same image. By consider-
ing the two distances, a more accurate study of the discrep-
ancy between training and inference is conducted.

Table 2 shows the discrepancies between training and in-
ference of different models, measured by dmc and dpw. It
can be clearly observed that our ARNet yields smaller dif-
ferences between the representations of ground-truth and
sequence generated for the same image. Thus ARNet
can significantly reduce the discrepancies of the encoder-
decoder and attentive encoder-decoder models. As such,
the generated sequences are more semantically similar to
the ground-truth.

5.1.5 Effect of λ

The parameter λ balances the contributions from the
encoder-decoder and ARNet. If λ is set as 0, our model
downgrades as the conventional encoder-decoder model.
Different λ values are evaluated. Fig. 5 shows CIDEr scores
of attentive encoder-decoder-ARNet models with different
λ. Our model with these positive λ values always performs
better than the conventional encoder-coder model, which
proves that ARNet with the regularization on the transition
dynamics is effective to improve the image captioning per-
formance. If λ is too large, the performance will decrease,
since the model focuses too much on the reconstruction part
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Figure 5. The CIDEr scores with different λ weights as in Eq. (9),
ranging in {0, 0.001, 0.005, 0.01, 0.05, 0.1}. The first bin with
λ = 0 denotes the vanilla attentive encoder-decoder model.

and ignores the supervision signal from ground truth. To
achieve better performance, appropriate λ needs to be care-
fully selected on the validation set. In this paper, λ is exper-
imentally chosen as 0.01 for the image captioning task.

5.2. Code Captioning

5.2.1 Dataset

For the code captioning task, We utilize the HabeasCor-
pus [24] dataset which is collected from nine open source
JAVA projects and contains 6, 734 source code files. Fol-
lowing the public split [35], the training, validation and test-
ing datasets, containing 5, 370, 702 and 662 files, respec-
tively, are used for our experiments. Each source code se-
quence is associated with a comment sentence which sum-
marizes the intention of the file. We transform the code
comment sentences into lowercase, tokenize them with
white space, resulting in a vocabulary with size 12, 860.
We truncate all the code sequences and comment sentences
such that they have 300 tokens at most. BLEU, METEOR,
and ROUGE-L are also used to measure the relevance with
respect to the reference sentences.

5.2.2 Implementation Details

We realize our ARNet on both the plain and attentive
encoder-decoder frameworks. The encoder and decoder
network are both single layer LSTM with hidden unit size
256. The word embedding size is 512. We pre-train the



Table 4. Discrepancy between training and inference modes on
code captioning task measured by the mean centroid and point-
wise distances defined in Eqs. (11) and (12). Smaller distance
values indicate better performance.

Model Name dmc dpw

Encoder-Decoder 0.643 0.722
Encoder-Decoder + ARNet 0.641 0.699
Attentive Encoder-Decoder 0.594 0.712
Attentive Encoder-Decoder + ARNet 0.322 0.465

model without ARNet with learning rate 1 × 10−3. Then
we train the whole model with learning rate 5× 10−4. The
batch size is set as 16. And the training procedure is ter-
minated with early stopping strategy when BLEU-4 score
reaches the maximum value on the validation set.

5.2.3 Evaluation and Comparison

Table 3 summarizes the results on the testing set of Habeas-
Corpus dataset. We implement all the models and report the
performances under the same settings. Our attentive ARNet
and non-attentive ARNet achieve 36.36% and 23.40% rela-
tive improvements on BLEU-4 metric over baseline model,
respectively. Again, our method significantly outperforms
scheduled sampling and zoneout. Moreover, comparing
with image captioning, the improvements brought by AR-
Net is even more significant. The main reason may due
to the time step length of the decoder. Our proposed AR-
Net make connections between neighboring hidden states
by the reconstruction strategy, which effectively regularize
the transition dynamics. Therefore, with time step increas-
ing, ARNet can make more effective gradient information
flow, compared to plain decoder.

5.2.4 Discrepancy Analysis

To study the discrepancy between training and inference on
this task, we also compute the distances measured by dmc
and dpw. The results of different models are shown in Ta-
ble 4. Similarly, we can observe that that our ARNet can
help mitigate the discrepancy between training and infer-
ence, thus making the inference more robust and improving
the quality of generated code captions.

5.3. Permuted Sequential MNIST

In this section, in order to further examine the regu-
larizing ability of our proposed ARNet on modeling long
term dependencies, a new task, namely permuted sequen-
tial MNIST [19, 17], is considered. Sequential MNIST is
first proposed [19] to classify MNIST digits, when the 784
pixels are presented sequentially to the recurrent net. Per-
muted sequential MNIST is an even more challenging prob-
lem, with the pixels presented in a (fixed) random order.

Table 5. Performance comparisons on permuted sequential
MNIST task. Our proposed ARNet outperforms recurrent dropout
and zoneout.

Model Name Test Accuracy
LSTM + recurrent dropout 0.925
LSTM + zoneout 0.931
Unregularized LSTM 0.914
LSTM + ARNet 0.933

The permuted pixel sequence is encoded by one single
LSTM layer with hidden size of 128. As introduced in
Sec. 4.1, ARNet is realized by another LSTM, coupling
with the encoder, to further regularize the LSTM transi-
tion dynamics. In this paper, the hidden size in ARNet
is also 128. The training is performed in two stages. We
first make pre-training on the encoder LSTM. Afterwards,
the two LSTMs of encoder and ARNet are jointly trained.
Adam [16] with learning rate 1 × 10−3 and 5 × 10−4 are
used for the two stages, respectively. The batch size is set
as 64.

Besides the unregularized LSTM, we also compare
with the other two regularziers, specifically the recurrent
dropout [27] and zoneout [17]. The performance compar-
isons are shown in Table 5, where the test accuracies of all
models are reported. First, the permuted sequential MNIST
is much more challenging, and LSTM can only achieve
91.4% accuracy. But by incorporating different regulariz-
ers, the test accuracies can be significantly improved. More-
over, with coupling ARNet with the unregularized LSTM,
we outperforms the recurrent dropout and zoneout. The
encouraging results on permuted sequential MNIST task
shows our ARNet can model long term dependencies more
effectively in the data.

6. Conclusion
In this paper, aiming at regularizing the transition dy-

namics and mitigating the discrepancy of RNN for se-
quence prediction, a novel auto-reconstructor network (AR-
Net) was proposed. ARNet, coupling with the conventional
encoder-decoder framework, reconstructs the past hidden
state with the current one, thus encouraging the present hid-
den state to embed more information from the previous one.
As such, ARNet can improve the performance of various
caption generation tasks. The extensive experimental re-
sults on image captioning, source code captioning, and per-
muted sequential MNIST tasks demonstrate the superiority
of our proposed ARNet.
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